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Let f ¥ C2, 2([−1, 1]2) be a real function satisfying “4f/“x2 “y2 \ 0 on [−1, 1]2.
We study the problem of best one-sided L1-approximation to f from the linear
space {h ¥ C2, 2([−1, 1]2) : “4h/“x2 “y2=0} of all blending functions of order
(2, 2). The unique best one-sided L1-approximant to f from above is characterized
by transfinite Hermite interpolation on the canonical grid {(x, y) ¥ [−1, 1]2 : |x|=
|y|}. For f even with respect to one of its variables we characterize the unique best
one-sided L1-approximant to f from below by transfinite Hermite interpolation on
the canonical grid {(x, y) ¥ [−1, 1]2 : |x|+|y|=1}. There is no canonical grid for
the entire cone class of functions f with “4f/“x2 “y2 \ 0 on [−1, 1]2 when we
approximate from below. The best one-sided L1-approximant from above has the
smoothness of f. The best one-sided L1-approximant to f from below is a blending-
spline function with two line segment knots {(x, 0) : −1 [ x [ 1} and {(0, y):−1 [
y [ 1}; i.e., the best one-sided approximation to f from below possesses a satura-
tion effect with respect to the smoothness of f. © 2002 Elsevier Science (USA)
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canonical point sets; best one-sided L1-approximation; transfinite Hermite
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1. INTRODUCTION AND MAIN RESULTS

The classical univariate algebraic polynomials have a natural multivariate
extension by the so-called blending functions. The real linear space Bm, n(I2)
of all blending functions of order (m, n) is defined as

Bm, n(I2) :=3h ¥ Cm, n(I2) : Dm, nh := “
m+n

“xm “yn
h=0 on I24 ,

where I2 :=[−1, 1]2 and

Cm, n(I2) :={f: I2Q R : D i, jf ¥ C(I2), 0 [ i [ m, 0 [ j [ n}.

The linear space Bm, n :=Bm, n(I2) is infinite-dimensional in contrast to the
fact that the linear space of all univariate algebraic polynomials of degree
less than or equal to m−1,

pm :=3p ¥ Cm(I) :
dm

dxm
p=04 ,

is of finite dimension m.
Any blending function h ¥ Bm, n can be represented in the form

h(x, y)=C
m−1

k=0
ak(y) xk+C

n−1

l=0
bl(x) y l, ak ¥ Cn(I), bl ¥ Cm(I).

Note that this representation is not unique. Conversely, each function of this
form is a Bm, n-blending function, so

Bm, n=3h ¥ Cm, n(I2) : h(x, y)=C
m−1

k=0
ak(y) xk+C

n−1

l=0
bl(x) y l4 .

The blending functions are an attractive tool for multivariate approxi-
mation due to their wide applications in various mathematical fields such
as numerical methods for partial differential equations, cubature formulae
for approximate integration of multidimensional integrals, computer aided
geometric design, etc. (see [7, 17] and the references there).

In various cases the explicit construction of best L1-approximants can be
given in terms of interpolation with respect to a canonical point set (grid).
Then if a canonical point set exists, the nonlinear problem of best (one-
sided) L1-approximation becomes a linear one for a (sufficiently large) class
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of functions. Appropriately chosen (transfinite) interpolation on the
canonical grid yields explicit characterization of the best approximants that
creates a basis for an algorithmic approach and numerical methods. This
makes the approximation via interpolation on canonical grids useful in
various fields of applied mathematics, physics and engineering.

As a classical example we mention the well known Markov theorem
[1, pp. 82–85; 11, p. 87] on best L1-approximation by polynomials. The
best L1-approximation has been subject to much research activity during
the last years when dealing with finite dimensional approximating space
(polynomials, Chebyshev systems) [25].

On the other hand there are recent characterization results for multi-
variate L1-approximants by transfinite interpolation with respect to canoni-
cal point sets where the approximating space is infinite-dimensional. For
example if we approximate subharmonic functions by harmonic functions
on the unit ball then a concentric sphere is a canonical point set [2]. If
one considers approximation by blending functions on the unit square
then the canonical point set forms a so-called blending grid consisting of
appropriate horizontal and vertical lines [20]. For further references
concerning characterization of best multidimensional L1-approximants
by canonical point sets the reader may consult the survey papers [5, 21].
Approximation by B1, 1-blending functions in L1-norm has been considered
in [22].

In [3, 4] the authors characterize best one-sided L1-approximation to a
continuous function by harmonic functions in terms of the set (usually
called zero-set) where a best one-sided approximant coincides with (inter-
polates) the function under approximation. As they mentioned the best one-
sided L1-approximant by harmonic functions may not exist and may be very
far from unique.

In [9] it has been shown that a canonical blending grid of vertical and
horizontal lines occurs in the case of one-sided L1-approximation by blend-
ing functions, too, but only when we approximate by a restricted, appropriately
chosen, subclass of blending functions. Moreover, an example was given,
showing that this is not the case when we approximate by the entire linear
space Bm, n.

Recently, we have found the existence of a canonical grid for best one-
sided L1-approximation when we approximate by the entire infinite-
dimensional space of B1, 1(I2)-blending functions to the cone class {f: D1, 1f
\ 0 on I2}.

Theorem A [14]. Let

Dg :={(x, y) ¥ I2 : x=y} and Dg :={(x, y) ¥ I2 : x=−y}
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be the diagonals of I2. Let f ¥ C1, 1(I2) satisfy D1, 1f \ 0 on I2. Then we have

(a) the unique solution

hg(x, y) :=f(−1, −1)+F
x

−1
D1, 0f(t, t) dt+F

y

−1
D0, 1f(t, t) dt

of the transfinite Hermite interpolation problem

hg|D*=f|D* and grad hg|D*=grad f|D* (hg ¥ B1, 1)

is the unique best one-sided L1-approximant to f from above with respect
to B1, 1;

(b) the unique solution

hg(x, y) :=f(−1, 1)+F
x

−1
D1, 0f(t, −t) dt−F

−y

−1
D0, 1f(t, −t) dt

of the transfinite Hermite interpolation problem

hg |D*=f|D* and grad hg |D*=grad f|D* (hg ¥ B1, 1)

is the unique best one-sided L1-approximant to f from below with respect
to B1, 1.

The method in [14] has been extended in [15] to give a solution in the
case of a best one-sided L1-approximation from the infinite-dimensional
space of B2, 1(I2)-blending functions to the cone class {f: D2, 1f \ 0 on I2}.
The characterization of the best one-sided L1-approximants is given by
transfinite Hermite interpolation on the canonical point set Jg :={(x, y) ¥
I2: y=2 |x|−1} when we approximate from above, resp. on the canonical
set Mg :={(x, y) ¥ I2 : y=−2 |x|+1} in the case of approximation from
below. Analogous results hold when we approximate onesidedly by
B1, 2(I2)-blending functions.

The problem of existence of a best uniform B1, 1-approximant to a given
function has been studied in [24, Chap. 2]. The basic notions when the
author deals with this problem is the lightning bolt that gives rise to a mul-
tidimensional extension of the Chebyshev alteration characterization of
best uniform approximation by polynomials. To the best of our knowledge
the notion of lightning bolt appears for the first time in the work of
V. I. Arnold [6] where the thirteenth Hilbert problem has been solved.
Algorithmic approaches to best uniform B1, 1-approximants are presented
in [13, 18]. In contrast to Theorem A the results in [16, 23] say the
following:
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Theorem B. Let f ¥ C1, 1(I2) and D1, 1f \ 0 on I2. Then the best
uniform approximant to f from B1, 1 is never unique if D1, 1f(xo, yo) > 0 at
some point (xo, yo) ¥ I2.

The theorems A and B show how the results in multidimensional
approximation theory (when dealing with infinite-dimensional approxi-
mating space too) could differ from the corresponding ones in the
one-dimensional case.

In the case of best one-sided L1-approximation from above our main
result is the following

Theorem 1.1. Let f ¥ C2, 2(I2) and D2, 2f \ 0 on I2 . Then the unique
best one-sided L1-approximant hgf from {h ¥ B

2, 2(I2) : h \ f} to f is charac-
terized by the following transfinite Hermite interpolation conditions

hgf|×*=f|×* and grad hgf|×*=grad f|×*

on the canonical grid ×g :={(x, y) ¥ I2 : |x|=|y|}.

In the case of best one-sided L1-approximation from below the situation
is different. There is no canonical grid for the entire cone class f ¥ C2, 2(I2)
and D2, 2f \ 0 on I2 (see Proposition 3.4). However, for the subcone of
functions which are even with respect to one of its variables a canonical
grid exists.

Theorem 1.2. Let f ¥ C2, 2(I2) and D2, 2f \ 0 on I2 . In addition, let
f=f0+h, where f0 is an even function with respect to one of its variables
and h ¥ B2, 2(I2). Then the unique best one-sided L1-approximant hfg to f
from below by the infinite-dimensional linear space B2, 2(I2) is characterized
via the transfinite Hermite interpolation conditions

hfg |q*=f|q* and grad hfg |q*=grad f|q*

on the canonical grid qg :={(x, y) ¥ I2 : |x|+|y|=1}.

Remark. The real linear space Bm, n(I2) is a bivariate analogue of the
univariate space of algebraic polynomials of a certain degree. In view of
this, the best approximants hgf and hfg can be seen as extended B2, 2 poly-
nomials. Thus, Theorem 1.1 and Theorem 1.2 can be considered as a
natural bivariate blending-type extension of classical one-dimensional
results on best one-sided L1-approximation by polynomials (Chebyshev
systems) [8, 12].

Remark. Let us mention also that the best one-sided L1-approximant
from above hgf has the smoothness of f. For example, if f is a polynomial
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then hgf is a polynomial, too. On the other hand, the best one-sided
L1-approximant hfg to f from below is a B2, 2(I2)-spline function with two
line segment knots {(x, 0): −1 [ x [ 1} and {(0, y): −1 [ y [ 1}. In other
words, the best one-sided from below approximant hfg possesses a
saturation effect with respect to the smoothness of f.

Example. Let f(x, y)=x2y2. Then hgf(x, y)=(x
4+y4)/2. However,

hfg(x, y)=
1
2 (x

4+y4)− 43 (|x|
3+|y|3)+(x2+y2)− 16

and evidently, hfg ¨ C3, 0(I2) 2 C0, 3(I2).

Notation. Let o be a point set in I2 and let g ¥ C2, 2(I2). Let g|o be the
restriction (the trace) of the function g on the point set o. Similarly, let
“f/“x|o and “f/“y|o be the restrictions (the traces) of “f

“x, resp. “f
“y on the

point set o. Then g|o=0 stands for the fact that g is identically zero on o.
Analogously, we symbolize the fact that “f/“x|o and “f/“y|o are both
identically zero by grad g|o=0.

The following Maximum/Minimum principles follow from Theorem 2.3,
respectively Lemma 3.2. They are useful in the proofs of Theorem 1.1 and
Theorem 1.2. These principles are not maximum/minimum principles in
the proper classic sense. They refer to subsets in I2 rather than to the
boundary of the given set as it is in the case of the Laplace differential
operator (subharmonic functions). However, these principles express the
same idea in a more general form. Namely, under some suppositions for a
given function on I2 we can localize considerably the point set where the
function attains maximum/minimum on I2.

Maximum Principle. Let g(x, y) ¥ C2, 2(I2) satisfy

g|×*=0, grad g|×*=0, and D2, 2g > 0 on I2.

Then g cannot attain a maximum on I20 ×g :={(x, y) ¥ I2 : |x| ] |y|}. In
other words g(x, y) < 0 on I20 ×g.

Minimum Principle. Let a function g(x, y) ¥ C2, 2(I2) satisfy

g|q*=0, grad g|q*=0, and D2, 2g > 0 on I2.

Then g cannot attain a minimum on intqg :={(x, y) ¥ I2 : |x|+|y| < 1}. In
other words g(x, y) > 0 on intqg.
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2. BEST ONE-SIDED L1-APPROXIMATION FROM ABOVE
BY BLENDING FUNCTIONS OF ORDER (2, 2)

2.1. Transfinite Interpolation by B2, 2(I2)-Blending Functions

In this subsection we study the problem of existence and uniqueness of a
blending transfinite Hermite interpolant hg ¥ B2, 2(I2) that interpolates
a given function f ¥ C2, 2(I2) on the point set (grid)

×g :={(x, y) ¥ I2 : |x|=|y|}

by the interpolation conditions

hg|×*=f|×* and grad hg|×*=grad f|×*. (2.1)

Let h ¥ B2, 2(I2). Then h can be represented in a form

h(x, y)=a(y) x+b(y)+c(x) y+g(x), (2.2)

where a( · ), b( · ), c( · ), g( · ) ¥ C2(I), I :=[−1, 1]. Note, that the represen-
tation (2.2) is not unique.

First we construct a B2, 2(I2)-blending function h1 that interpolates f by
the interpolation conditions

h1 | I1=f|I1 ; grad h1 | I1=grad f|I1 , (2.3)

where I1 :={(x, y) ¥ I2 : x=y}. All B2, 2(I2)-functions of the form

h1(x, y)=a(y) x+c(x) y+5F
x

0
f (1, 0)(t, t) dt−F

x

0
a(t) dt−F

x

0
tc −(t) dt6

+5Fy
0
f (0, 1)(t, t) dt−F

y

0
c(t) dt−F

y

0
ta −(t) dt6+f(0, 0),

where a( · ), c( · ) ¥ C2(I), describe the solution of the interpolation problem
(2.3). Analogously, for the point set I2 :={(x, y) ¥ I2 : x=−y} all the
solutions of the interpolation problem

h2 | I2=f|I2 ; grad h2 | I2=grad f|I2 ; h2 ¥ B2, 2(I2) (2.4)

are given by the B2, 2(I2)-blending functions of the form

h2(x, y)=a(y) x+c(x) y+5F
x

0
f (1, 0)(t, −t) dt−F

x

0
a(−t) dt+F

x

0
tc −(t) dt6

+5Fy
0
f (0, 1)(−t, t) dt−F

y

0
c(−t) dt+F

y

0
ta −(t) dt6+f(0, 0),

78 DRYANOV AND PETROV



for arbitrary a( · ), c( · ) ¥ C2(I). Note, that h1 and h2 are sums of a(y) x+
c(x) y with B1, 1-blending functions that interpolate f(x, y)−a(y) x−c(x) y
on the diagonals I1 and I2, respectively (see Theorem A).

Denote by S, S1 and S2 the sets of all solutions of the interpolation
problems (2.1), (2.3) and (2.4), respectively. It is obvious that S=S1 5 S2.
In other words, to find the set S we have to determine the non-unique basic
functions a( · ), c( · ) ¥ C2(I) in both interpolation problems (2.3) and (2.4)
such that

hg(x, y) :=h1(x, y) — h2(x, y) ¥ C2, 2(I2).

In our further considerations we shall use the notations

W1 :={(x, y) ¥ I2 : x > 0, y > 0}; W2 :={(x, y) ¥ I2 : x < 0, y < 0};

W3 :={(x, y) ¥ I2 : x < 0, y > 0}; W4 :={(x, y) ¥ I2 : x > 0, y < 0};

and

Ix, 0 :={(x, y) ¥ I2 : y=0}; I0, y :={(x, y) ¥ I2 : x=0}.

Obviously, Ix, 0 2 I0, y 2 (14
i=1 Wi)=I

2. All solutions hg(x, y) of the
interpolation problem (2.1) are determined by

hg(x, y)=˛h1(x, y) on W1 2 W2
h2(x, y) on W3 2 W4,

where the B2, 2-blending functions h1(x, y) and h2(x, y) satisfy the
transfinite interpolation (matching) conditions

D i, jh1 | Ix, 0=D
i, jh2 | Ix, 0 , D

i, jh1 | I0, y=D
i, jh2 | I0, y , 0 [ i, j [ 2.

Note, that this approach will give all solutions of the interpolation problem
(2.1).

These matching conditions are equivalent to the following system of
integral-differential equations (interpolation conditions):

(1) 2 F
y

0
ta−(t) dt+F

y

0
[c(t)−c(−t)] dt=F

y

0
[f(0, 1)(t, t)−f(0, 1)(−t, t)] dt;

(2) 2 F
x

0
tc−(t) dt+F

x

0
[a(t)−a(−t)] dt=F

x

0
[f(1, 0)(t, t)−f(1, 0)(t, −t)] dt;

(3) 2ya−(y)+c(y)−c(−y)=f(0, 1)(y, y)−f(0, 1)(−y, y);

(4) 2xc−(x)+a(x)−a(−x)=f(1, 0)(x, x)−f(1, 0)(x, −x),
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where the functions a( · ) and c( · ) ¥ C2(I). The matching conditions (3) and
(4) follow directly from (1) and (2).

We shall use the above considerations in the proof of the uniqueness of
the solution of the interpolation problem (2.1).

Lemma 2.1. Suppose that the interpolation problem (2.1) has a solution.
Then this solution is unique.

Proof. It is sufficient to prove that the transfinite interpolation problem
(2.1) with zero interpolation conditions has the constant zero as a unique
solution. From (3) and (4) we obtain that the basic functions a( · ),
c( · ) ¥ C2(I) satisfy the system

:2xa
−(x)+c(x)−c(−x)=0

2xc −(x)+a(x)−a(−x)=0.
(2.5)

We have a −(x)+a −(−x)=[c(−x)−c(x)]/x, 2xc'(x)+2c −(x)+a −(x)+a −(−x)
=0S 2xc'(x)+2c −(x)+[c(−x)−c(x)]/x=0 or [x(c −(x)−c −(−x))] −=0.
Hence, x[c −(x)−c −(−x)]=0 so, [c(x)+c(−x)] −=0. Thus c(x)+c(−x)
=2c(0) and c −(x)=c −(−x) and xa −(x)=−c(x)+c(0). Analogously,
xc −(x)=−a(x)+a(0). On the other hand x[a(x)+c(x)] −+[a(x)+c(x)]
=a(0)+c(0) and from here a(x)+c(x)=a(0)+c(0). Now by using
that xa −(x)=−c(x)+c(0) we get [(a(x)−a(0))/x)] −=0 and similarly,
[(c(x)−c(0))/x)] −=0.
Hence, all solutions of the system (2.5) are given by linear functions

a(x)=xa −(0)+a(0) and c(x)=xc −(0)+c(0)

under the additional condition a −(0)+c −(0)=0.
Then for h1(x, y) we obtain

h1(x, y)=a(0) x+c(0) y−F
x

0
[ta −(0)+a(0)] dt−F

x

0
tc −(0) dt

−F
y

0
[tc −(0)+c(0)] dt−F

y

0
ta −(0) dt — 0.

Analogously, h2(x, y) — 0. From here, we conclude that hg — 0. L

In the next lemma we give an explicit expression for the unique solution
of the interpolation problem (2.1).

Lemma 2.2. For a given function f ¥ C2, 2(I2) the transfinite interpolation
problem (2.1) has a unique solution in the infinite-dimensional linear space
B2, 2(I2).
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Proof. The uniqueness follows by Lemma 2.1. Any solution of the
transfinite interpolation problem (2.1) can be given in the form (2.2), where
the functions c( · ), a( · ) ¥ C2(I2) satisfy the matching conditions (1), (2) S

(3), (4). From here we have h1=h2 :=hg and

hg(x, y)=a(y) x+c(x) y+12 F
x

0
[f(1, 0)(t, t)+f(1, 0)(t, −t)] dt

+12 F
y

0
[f (0, 1)(t, t)+f(0, 1)(−t, t)] dt− 12 F

x

0
[a(t)+a(−t)] dt

− 12 F
y

0
[c(t)+c(−t)] dt+f(0, 0). (2.6)

It is easily seen that hg, as it is defined above, satisfies the interpolation
conditions (2.1). The existence of a solution hg will follow if we prove that
the system (1), (2) has a solution c( · ), a( · ) ¥ C2(I). Note, that the repre-
sentation (2.2) of a B2, 2-blending function is not unique. By the matching
condition (4) we have

c −(x)=[(f (1, 0)(x, x)−f (1, 0)(x, −x))−(a(x)−a(−x))]/(2x).

Writing the above formula for c −(−x) we obtain

c(x)+c(−x)−2c(0)=F
x

0
[f(1, 0)(t, t)+f(1, 0)(−t, −t)

−f (1, 0)(t, −t)−f (1, 0)(−t, t)]/(2t) dt.

By analogy, a similar expression for a( · ) holds also

a(y)+a(−y)−2a(0)=F
y

0
[f(0, 1)(t, t)+f(0, 1)(−t, −t)

−f (0, 1)(−t, t)−f (0, 1)(t, −t)]/(2t) dt.

By using the notation

D1, 0(x) :=F
x

0
[f(1, 0)(t, t)+f(1, 0)(−t, −t)−f(1, 0)(t, −t)−f(1, 0)(−t, t)]/(2t) dt,

and

D0, 1(y) :=F
y

0
[f(0, 1)(t, t)+f(0, 1)(−t, −t)−f(0, 1)(−t, t)−f(0, 1)(t, −t)]/(2t) dt,

ONE-SIDED BLENDING L1-APPROXIMATION 81



we see that the functions c( · ) and a( · ) satisfy

c(x)+c(−x)=D1, 0(x)+2c(0) and a(y)+a(−y)=D0, 1(y)+2a(0).

From here and in view of (2.6) any solution hg of the interpolation problem
(2.1) has the form

hg(x, y)=[a(y)−a(0)] x+[c(x)−c(0)] y

+12 F
x

0
[f (1, 0)(t, t)+f(1, 0)(t, −t)] dt

+12 F
y

0
[f(0, 1)(t, t)+f(0, 1)(−t, t)] dt− 12 F

x

0
D0, 1(t) dt

− 12 F
y

0
D1, 0(t) dt+f(0, 0). (2.7)

Observing that any solution hg of (2.1) satisfies the interpolation conditions

hg(x, x)=f(x, x) and hg(x, −x)=f(x, −x)

we get in view of (2.7)

f(x, x)−f(x, −x)=1
2 F
x

−x
[f (0, 1)(t, t)+f(0, 1)(−t, t)] dt

− 12 F
x

−x
D1, 0(t) dt+x[a(x)−a(−x)]+2x[c(x)−c(0)].

Using the matching condition (4) in the above formula we obtain the
next explicit formula for c( · ):

5c(x)−c(0)
x
6 −=−f(x, x)−f(x, −x)

2x3
+
1
2x2
[f(1, 0)(x, x)−f (1, 0)(x, −x)]

+
1
4x3

F
x

−x
[f (0, 1)(t, t)+f(0, 1)(−t, t)] dt

−
1
4x3

F
x

−x
D1, 0(t) dt.
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A similar formula holds for a( · ):

5a(y)−a(0)
y
6 −=−f(y, y)−f(−y, y)

2y3
+
1
2y2
[f(0, 1)(y, y)−f (0, 1)(−y, y)]

+
1
4y3

F
y

−y
[f(1, 0)(t, t)+f(1, 0)(t, −t)] dt

−
1
4y3

F
y

−y
D0, 1(t) dt.

By making use of (2.7) and the above formulas for a( · ), c( · ) we get the
following explicit expression for the unique solution of the interpolation
problem (2.1),

hgf(x, y)

:=xy.f (1, 1)(0, 0)+f(0, 0)

+xy.3Fy
0
(t[f(0, 1)(t, t)−f (0, 1)(−t, t)]−[f(t, t)−f(−t, t)])/(2t3) dt

+F
x

0
(t[f(1, 0)(t, t)−f (1, 0)(t, −t)]−[f(t, t)−f(t, −t)])/(2t3) dt

+F
y

0

1
4t3

F
t

−t
[ f (1, 0)(v, v)+f(1, 0)(v, −v)] dv dt

+F
x

0

1
4t3

F
t

−t
[ f (0, 1)(v, v)+f(0, 1)(−v, v)] dv dt

−F
y

0

1
4t3

F
t

−t
D0, 1(v) dv dt−F

x

0

1
4t3

F
t

−t
D1, 0(v) dv dt4

+
1
2
F
x

0
[ f (1, 0)(t, t)+f(1, 0)(t, −t)] dt

+
1
2
F
y

0
[f(0, 1)(t, t)+f(0, 1)(−t, t)] dt

−
1
2
F
x

0
D0, 1(t) dt−

1
2
F
y

0
D1, 0(t) dt. L (2.8)

Now we are ready to prove our first main result in this section.

ONE-SIDED BLENDING L1-APPROXIMATION 83



Theorem 2.3. Let f ¥ C2, 2(I2) be a given function. Then we have:

(a) the function hgf(x, y) defined by (2.8) is the unique transfinite
Hermite interpolant from B2, 2 satisfying the interpolation conditions (2.1);

(b) the following error representation formula holds true,

f(x, y)−hgf(x, y)=−
(x2−y2)2

8
D2, 2f(t, g), (2.9)

where (t, g)=(t(x, y), g(x, y)) ¥ I2.

Proof of (a). The statement (a) follows directly by Lemma 2.1 and
Lemma 2.2. Note, that the uniqueness of hgf can be obtained also by using
the error representation (b).

Proof of (b). For a given (x0, y0) ¥ I20 ×g we consider the auxiliary
function

f(x, y) :=f(x, y)−hgf(x, y)+c .(x2−y2)2,

where the constant

c :=−
f(x0, y0)−h

g
f(x0, y0)

(x20−y
2
0)
2

is chosen such that f(x0, y0)=0. Clearly, we have

f|×*=0 and grad f|×*=0. (2.10)

We are going to show that D2, 2f vanishes at some point on I2. Suppose to
the contrary that D2, 2f > 0 on I2. The case D2, 2f < 0 on I2 is a similar one.
The next construction is important for the proof. The mixed divided differ-
ence of order (2, 2) for the function f(x, y) with knots [−t, t, t] (t ¥ I2 and
t ] 0) can be represented as

[−t, t, t]x [−t, t, t]y f

=[−t, t, t] 5f
(1, 0)(t, · )
2t

−
f(t, · )−f(−t, · )

4t2
6

=
1
4t2
3f (1, 1)(t, t)− 1

2t
[f (1, 0)(t, t)−f (1, 0)(t, −t)]4

−
1
8t3
3f (0, 1)(t, t)− 1

2t
[f(t, t)−f(t, −t)]4

+
1
8t3
3f (0, 1)(−t, t)− 1

2t
[f(−t, t)−f(−t, −t)]4 .
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By using the integral representation of univariate divided differences (see
[10] for details) and the mean value theorem we obtain

[−t, t, t]x [−t, t, t]y f=F
I2
B1(− t, t, t; u) B1(− t, t, t; v) D2, 2f(u, v) du dv

=
1
4
D2, 2f(t̃, g̃) > 0, (t̃, g̃) ¥ I2,

where B1(− t, t, t; · ) denotes the univariate B-spline of degree 1 with 3
knots −t, t, t and normalized with >I B1(−t, t, t; u) du=1/2. In view of
the interpolation conditions (2.10) and the above representations of a
mixed divided difference we obtain

0 < [−t, t, t]x [−t, t, t]y f=
f (1, 1)(t, t)
4t2

.

In a similar way we get

f (1, 1)(t, −t) < 0.

Therefore for the sign of f (1, 1) on the diagonals I1={(x, y) ¥ I2 : x=y}
and I2={(x, y) ¥ I2 : x=−y} (excluding the origin, where f (1, 1)(0, 0)=0)
we have

sign[f (1, 1)|I1 ]=1 and sign[f (1, 1)|I2 ]=−1.

Further, differentiating the identities

f (1, 0)(x, x)=f (1, 0)(x, −x)=f (0, 1)(x, x)=f (0, 1)(x, −x)=0, x ¥ I

we get

sign[f (2, 0)|I1 ]=sign[f (2, 0)|I2 ]=sign[f (0, 2)|I1 ]=sign[f (0, 2)|I2 ]=−1. (2.11)

Assume for definiteness that x0+y0 < 0 < −x0+y0 (all other cases are
similar to this one). In view of f(x0, y0)=0, the interpolation conditions
(2.10) and Rolle’s theorem we obtain

f (2, 0)(x̃0, y0)=0

for some x0 < x̃0 < 0 and this leads us to a contradiction with (2.11),
observing that the function f (2, 0)(x̃0, y) is a strictly convex function with
respect to y by assumption. Analogously, if we suppose that D2, 2f < 0 on
I2 we will get a contradiction by using the function −f in a similar way.
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Therefore, there exists a point (t, g) ¥ I2 such that D2, 2f(t, g)=0. In view
of D2, 2hgf — 0 we obtain (2.9). L

Corollary 2.4. Let f ¥ C2, 2(I2) and let D2, 2f \ 0 on I2. Then we have

f(x, y) [ hgf(x, y) for (x, y) ¥ I2.

2.2. Cubature Formula Based on the Interpolation Formula (2.8)

In view of the fact that D1, 0(t) and D0, 1(t) (see representation (2.8) for
hgf) are even functions (with respect to the variable t ¥ [−1, 1]) it is readily
seen that

F
1

−1
F
1

−1
hgf(x, y) dx dy=F

1

−1
F
x

0
[f(1, 0)(t, t)+f(0, 1)(t, t)] dt dx

+F
1

−1
F
x

0
[f(1, 0)(t, −t)−f(0, 1)(t, −t)] dt dx+4f(0, 0)

=F
1

−1
F
x

0

d
dt
[f(t, t)] dt dx

+F
1

−1
F
x

0

d
dt
[f(t, −t)] dt dx+4f(0, 0)

=F
1

−1
f(x, x) dx+F

1

−1
f(x, −x) dx.

From here we obtain the following cubature formula

F
I2
f % F

I2
hgf or F

I2
f % F

I
f(x, x) dx+F

I
f(x, −x) dx. (2.12)

By the uniqueness of the transfinite Hermite B2, 2-interpolant on ×g it
follows that h — hgh for any h ¥ B2, 2. Hence, the cubature formula (2.12) is
exact for all function from the linear space B2, 2(I2). The fact that the
cubature (2.12) is exact in B2, 2(I2) could be easily derived from the repre-
sentation (2.2) if the form of the cubature (2.12) was previously known. Let
us denote

CFg(f) :=F
I
f(x, x) dx+F

I
f(x, −x) dx.
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Our purpose now is to obtain an expression for the error

L(f) :=F
I2
f−CFg(f)

of the cubature (2.12).
Let h̃f(x, y) denote the transfinite Hermite B2, 2(I2)-interpolant of
f ¥ C2, 2(I2) based on the interpolation information

f(−1, y), f (1, 0)(−1, y), f(x, −1), f (0, 1)(x, −1).

The following representation holds [9]

f(x, y)− h̃f(x, y)=F
I2
(x−u)+ (y−v)+ D2, 2f(u, v) du dv. (2.13)

Applying the linear functional L to the above identity we obtain Peano
kernel representation for the error of the cubature (2.12).

Theorem 2.5. Let f ¥ C2, 2(I2) be a given function. Then we have

L(f)=F
I2
f−CFg(f)=F

I2
Kg(u, v) D2, 2f(u, v) du dv,

where the Peano kernel Kg is given by

Kg(u, v) :=L[( · −u)+ ( · −v)+]

=
(1−u)2 (1−v)2

4
−
(1−u)(1−v)2

2

+
(1−v)3

6
−
(u−v)3+
6

−
(−u−v)3+
6

.

Moreover, Kg [ 0 on I2, and by the mean value theorem

F
I2
f−CFg(f)=− 445 D

2, 2f(t, g), (2.14)

where (t, g) ¥ I2.

Proof. Direct calculations show that the Peano kernel

Kg(u, v) :=L[( · −u)+ ( · −v)+]
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can be represented by the above expression. We shall prove that Kg [ 0
on I2. In view of the identity (u−v)3+=(u−v)

3+(v−u)3+ we have
Kg(u, v)=Kg(v, u), (u, v) ¥ I2. Hence it is sufficient to check only the
following two cases.

(i) Let |u| [ v. Then

Kg(u, v) [ −[(v+1/3)(1−v)3]/4 [ 0.

(ii) For u [ −|v| we have

Kg(u, v) [ [(u+1)2 (|v|−1)(|v|+1/3)]/4 [ 0.

Therefore, Kg(x, y) [ 0 on I2 with equality only at the points (±1, v) and
(u, ±1). For f0(x, y) :=x2y2 we have

L(f0)=F
I2
f0−CFg(f0)=F

I2
Kg(u, v) D2, 2f0(u, v) du dv

=4 F
I2
Kg(u, v) du dv.

Simple calculations show that L(f0)=−16/45. Hence,

F
I2
Kg(u, v) du dv=1

4L(f0)=−
4
45 .

By the mean value theorem we complete the proof of Theorem 2.5. L

2.3. Best One-Sided L1-Approximation from Above by B2, 2-Blending Functions

Proof of Theorem 1.1. By Theorem 2.3 we have hgf \ f on I2.
Let h ¥ B2, 2(I2) and h \ f on I2. We have

F
I2
(h−f)=F

I2
(h−hgf)+F

I2
(hgf−f).

In view of the cubature (2.12), (2.14) we obtain

F
I2
(h−hgf)=F

1

−1
(h−hgf)(x, x) dx+F

1

−1
(h−hgf)(x, −x) dx

=F
1

−1
(h−f)(x, x) dx+F

1

−1
(h−f)(x, −x) dx \ 0,
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since h \ f in I2 and hgf|×*=f|×*. From here

F
I2
(h−f) \ F

I2
(hgf−f) (2.15)

for each h ¥ B2, 2(I2) satisfying h−f \ 0. Hence, hgf is a best one-sided L1-
approximant to f from above with respect to B2, 2(I2).

Next, we prove the uniqueness of the best one-sided approximant hgf.
Assume that for some h=h0 ¥ B2, 2(I2), h0 \ f on I2 we have equality in
(2.15). Therefore,

F
I2
(h0−h

g
f)=0.

The cubature (2.14) yields

0=F
I2
(hgf−h0)=F

1

−1
(hgf−h0)(x, x) dx+F

1

−1
(hgf−h0)(x, −x) dx [ 0,

since h0 \ f on I2 and hgf|×*=f|×*. Thus, we have

h0|×*=h
g
f|×*=f|×*

and consequently

min
I2
(h0−f)=(h0−f)|×*=0.

This implies

grad h0|×*=grad f|×*=grad hgf|×*.

In view of the uniqueness of the transfinite B2, 2-blending interpolant
(2.1), (2.8) we obtain h0 — h

g
f. Hence, hgf is the unique best one-sided from

above L1-approximant to f with respect to the infinite-dimensional linear
space B2, 2(I2). L

Remark. The first part of the above proof showing that hgf is a best one-
sided L1-approximant from above follows by [4, Proposition 1], too. Let
us mention that in the case of harmonic approximation a part of this
proposition is essentially given in [19]. In the particular case of blending
approximation we arrived also at a part of the same proposition in our
studies on best one-sided blending L1-approximation, published in [9].
This interesting proposition is not a prescription for getting directly canon-
ical grid multidimensional approximation results (see Proposition 3.4) but
it shows that natural multidimensional extensions of the one-dimensional
Markov’s canonical point set theorem [1, pp. 82–85; 11, p. 87] are possible.
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3. BEST ONE-SIDED L1-APPROXIMATION FROM BELOW
BY BLENDING FUNCTIONS OF ORDER (2, 2)

Let f ¥ C2, 2(I2) be a given function with D2, 2f \ 0 on I2. In addition,
suppose that f=f0+h, where f0 is even with respect to one of the
variables and h ¥ B2, 2(I2). We shall prove that the unique best one-sided
L1-approximant to f from below is the unique solution hfg of the transfinite
Hermite interpolation problem

hfg |q*=f|q* and grad hfg |q*=grad f|q* (3.1)

from B2, 2(I2) on the canonical grid

qg :={(x, y) ¥ I2 : |x|+|y|=1}.

Remark. Our expectation was that the best one-sided L1-approximant
from below should be given by blending interpolation on a fixed canonical
point set for the entire cone class of C2, 2(I2)-functions with non negative
(2, 2) derivative on I2. However, this is not the case. It is shown (Proposi-
tion 3.4, Section 3.3) that there is no canonical point set for the entire cone
class under consideration when dealing with the best one-sided
L1(I2)-approximation from below by B2, 2(I2).

3.1. Transfinite Hermite Interpolation by B2, 2(I2)-Blending Functions on qg

Let f ¥ C2, 2(I2). We denote by fe, e, fe, o, fo, e, and fo, o its even-even,
even-odd, odd-even, and odd-odd components, respectively. It is easily seen
that

fe, e(x, y)=1
4 [f(x, y)+f(−x, y)+f(x, −y)+f(−x, −y)]

and analogous formulas for fe, o, fo, e and fo, o hold. Obviously,

f=fe, e+fe, o+fo, e+fo, o.

For fe, e ¥ C2, 2(I2) an explicit solution he, eg of the transfinite Hermite
interpolation problem (3.1) can be given by the formula

he, eg (x, y) :=F
|x|

1/2
D1, 0fe, e(t, 1−t) dt+F

|y|

1/2
D0, 1fe, e(1−t, t) dt

+fe, e(1/2, 1/2). (3.2)
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Analogously, explicit solutions he, og , ho, eg and ho, og of the interpolation
problem (3.1) to fe, o, fo, e, and fo, o, respectively can be given by the next
formulas:

he, og (x, y) :=f
e, o(1− |y|, y)+y 3F |x|

1/2

D1, 0fe, o(t, 1−t)
1−t

dt

−F
1− |y|

1/2

D1, 0fe, o(t, 1−t)
1−t

dt4 ; (3.3)

ho, eg (x, y) :=f
o, e(x, 1− |x|)+x 3F |y|

1/2

D0, 1fo, e(1−t, t)
1−t

dt

−F
1− |x|

1/2

D0, 1fo, e(1−t, t)
1−t

dt4 ; (3.4)

ho, og (x, y) :=xy 3F
|x|

1/2

tD1, 0fo, o(t, 1−t)−fo, o(t, 1−t)
t2(1−t)

dt

+F
|y|

1/2

tD0, 1fo, o(1−t, t)−fo, o(1−t, t)
t2(1−t)

dt+4fo, o(1/2, 1/2)4 .
(3.5)

Long, but simple and rewarding calculations based on L’Hospital rule
show that:

(1) The functions he, eg , he, og ho, eg , and ho, og belong to C2, 2(I2). Hence,
they are B2, 2-blending functions.

(2) Each of the functions he, eg , he, og , ho, eg , and ho, og satisfies the transfi-
nite interpolation conditions (3.1) with f replaced by fe, e, fe, o, fo, e, and
fo, o, respectively.

The next theorem concerns the problem of transfinite Hermite
interpolation by B2, 2(I2)-functions on qg.

Theorem 3.1. Let f ¥ C2, 2(I2). Then we have:

(a) the function hfg defined by

hfg :=h
e, e
g +h

e, o
g +h

o, e
g +h

o, o
g

is the unique solution of the transfinite interpolation problem (3.1) to f from
B2, 2(I2) ;
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(b) if f is even with respect to x or to y then the following error
representation holds true

f(x, y)−hfg(x, y)=
1
4 D

2, 2f(t, g)(|x|+|y|−1)2

×[− 12 (|x|− |y|)
2+13 (|x|+|y|)+

1
6], (3.6)

where (t, g)=(t(x, y), g(x, y)) ¥ I2.

Proof of (a). Existence of a solution. By using the fact that the trans-
finite Hermite interpolation problem (3.1) is a linear one and in view of the
obvious equality

f=fe, e+fe, o+fo, e+fo, o

we arrive to the conclusion that hfg is a solution of the transfinite
interpolation problem (3.1).
Uniqueness of the solution. Let f ¥ C2, 2(I2). In addition, let f|q*=0

and let grad f|q*=0. Then the same interpolation conditions hold for
fe, e, fe, o, fo, e, fo, o since the point set qg is symmetric with respect to the
coordinate axes. Suppose that h(x, y) ¥ B2, 2(I2) is an arbitrary solution to f
of the interpolation problem (3.1) as above. The function h, being
from B2, 2(I2), can be represented in a form h(x, y)=a(y) x+b(y)+
c(x) y+g(x) with a( · ), b( · ), c( · ), g( · ) from C2(I). Note, that the transfi-
nite Hermite interpolation (3.1) is a linear operator from C2, 2(I2) to B2, 2(I2).
In view of this, the B2, 2-blending functions he, e, he, o, ho, e, ho, o satisfy the
transfinite interpolation conditions (3.1) with f replaced by fe, e, fe, o, fo, e,
fo, o, respectively. Note, that h=he, e+he, o+ho, e+ho, o . Simple verifications
show

he, e(x, y)=1/2[(g(x)+g(−x))+(b(y)+b(−y))].

Hence, he, e(x, y) has the form h1(x)+h2(y) where h1 and h2 are even. Anal-
ogously, he, o, ho, e, ho, o have representations yh3(x)+h4(y), h5(x)+xh6(y),
yh7(x)+xh8(y), respectively, where h1, h2, h3, h6 are even and h4, h5, h7, h8
are odd. In view of the interpolation conditions (3.1), it is easily seen that
the even functions h1, h2, h3, h6 and the odd functions h4, h5, h7, h8 are
solutions of a simple system of differential equations:

h −1(x)=h
−

2(x)=h1(x)+h2(1−x)=0, x ¥ [0, 1];
h −3(x)=h3(x)+h

−

4(1−x)=(1−x) h3(x)+h4(1−x)=0, x ¥ [0, 1];
h −6(x)=h6(x)+h

−

5(1−x)=(1−x) h6(x)+h5(1−x)=0, x ¥ [0, 1];
(1−x) h −7(x)+h8(1−x)=xh

−

8(1−x)+h7(x)
(1−x) h7(x)+xh8(1−x)=0, x ¥ [0, 1].
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All solutions of the above system have to satisfy

h1(x)+h2(y)=yh3(x)+h4(y)

=h5(x)+xh6(y)=yh7(x)+xh8(y)=0, (x, y) ¥ I2.

Hence, h — 0 and the uniqueness follows. Part (a) of Theorem 3.1 is proved.
For the proof of part (b) we need the following auxiliary result.

Lemma 3.2. Let f ¥ C2, 2(I2) be given such that

f|q*
=0, grad f|q*=0 (3.7)

and

D2, 2f > 0 on I2. (3.8)

Then we have:

(i) f(x, y)+f(−x, y) > 0 for all (x, y) ¥ I20qg .

(ii) The function f satisfies a minimum principle: f cannot attain its
minimum value on intqg at intqg, i.e., f(x, y) > 0 on intqg.

Proof of Lemma (3.2). The crucial point is to consider a second order
divided difference of f(x, y) with respect to the variable x,

Ft(y)=[−t, t, t] f( · , y)=
1
2t
5f (1, 0)(t, y)−f(t, y)−f(−t, y)

2t
6

as a function of y for fixed t ] 0. In view of (3.8) it is a strictly convex
function with respect to y and by (3.7) it vanishes for all (t, y) ¥qg. Hence,
for (t, y) ¥ I2 with t > 0 we have

f (1, 0)(−t, y) <
f(t, y)−f(−t, y)

2t
< f (1, 0)(t, y) (3.9)

if (t, y) ¥ I20 intqg and

f (1, 0)(−t, y) >
f(t, y)−f(−t, y)

2t
> f (1, 0)(t, y) (3.10)

if (t, y) ¥ intqg. Integrating (3.9) or (3.10) (the choice depends on the
location of (x, y) on I2) with respect to t from x to 1− |y| we obtain (i).
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(ii) Suppose that there is a point (xm, ym) ¥ intqg such that

f(xm, ym)= min
(x, y) ¥ intq*

f(x, y). (3.11)

From here, grad f(xm, ym)=0. By (i) we have f(0, y) > 0 and f(x, 0) > 0.
Thus, xm ] 0. Without any loss of generality, assume that xm > 0. Then
(3.10) with t=xm, y=ym yields f(−xm, ym) < f(xm, ym) and we are led to
a contradiction with (3.11), since (−xm, ym) ¥ intqg. L

Remark. If in Lemma 3.2 we replace (3.8) by D2, 2f \ 0 on I2, then
f(x, y)+f(−x, y) \ 0 on I2, which follows by a similar argument.
Analogously, if D2, 2f \ 0 on I2 then

(f−hfg)(x, y)+(f−h
f
g)(x, −y) \ 0 for all (x, y) ¥ I2.

Proof of part (b) of Theorem 3.1. Now we shall prove that the error
representation (3.6) holds true for any function which is even with respect
to one of the variables. Let f(x, y) ¥ C2, 2(I2) be an even function with
respect to x, i.e., f(x, y)=f(−x, y), (x, y) ¥ I2. Let hfg be the unique
B2, 2(I2)-interpolant satisfying the interpolation conditions (3.1). Since f is
even with respect to x we have ho, eg =h

o, o
g =0. Let us denote

g(x, y) :=x2y2− 12 (x
4+y4)+43 (|x|

3+|y|3)−(x2+y2)+16

=(|x|+|y|−1)2 (− 12 (|x|− |y|)
2+13 (|x|+|y|)+

1
6)

=:(|x|+|y|−1)2 g1(x, y). (3.12)

It can be easily seen that g1 \ 0 on I2 with equality only at the points
(0, ±1) and (±1, 0). Let (x0, y0) ¥ I20qg. Consider the auxiliary function
(which is even with respect to x)

f(x, y) :=f(x, y)−hfg(x, y)−
f(x0, y0)−h

f
g(x0, y0)

g(x0, y0)
g(x, y).

It is clear that f satisfies (3.7) and f(x0, y0)=0. Suppose that D2, 2f > 0
on I2. Then Lemma 3.2(i) yields

f(x, y)=1
2 [f(x, y)+f(−x, y)] > 0 for all (x, y) ¥ I20qg,

and we are led to a contradiction with f(x0, y0)=0. Suppose that
D2, 2f < 0 on I2. Then we consider the function −f and again we arrive to
a contradiction. Thus, there exists a point (t, g)=(t(x0, y0), g(x0, y0))
such that D2, 2f(t, g)=0 and we end the proof. L
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Remark. The transfinite B2, 2(I2)-blending interpolant hfg is a B2, 2(I2)-
spline function with two line segment knots {(x, 0): −1 [ x [ 1} and
{(0, y): −1 [ y [ 1}. In general it is only a C2, 2-function on I2 (see the
Example in Section 1), while on Wj, j=1, ..., 4 (see Section 2.1) it has the
same smoothness as f.

3.2. Cubature Formula Based on the (B2, 2(I2),qg) Interpolation

Integrating the B2, 2(I2)-interpolant hfg (explicitly given by (3.2)–(3.5))
over I2 we obtain the cubature formula

F
I2
f % F

I
f(x, 1− |x|) dx+F

I
f(x, |x|−1) dx, (3.13)

which is exact for all blending-functions in B2, 2(I2). In contrast with the
error representation (3.6) the next representation for the error of the
cubature (3.13) holds true for any function f ¥ C2, 2(I2). Let us denote

CFg(f) :=F
I
f(x, 1− |x|) dx+F

I
f(x, |x|−1) dx.

Theorem 3.3. Let f ¥ C2, 2(I2). Then there exists a point (r, s) ¥ I2 such
that

F
I2
f−CFg(f)=

7
90 D

(2, 2)f(r, s). (3.14)

Proof. By Lemma 3.2(i) we have

F
I2
f=F

1

−1
F
1

−1

1
2 [f(x, y)+f(−x, y)] dx dy > 0 (3.15)

for any f ¥ C2, 2(I2) satisfying (3.7) and (3.8). Let us consider the auxiliary
function

fg(x, y) :=f(x, y)−h
f
g(x, y)−

>I2 f− >I2 hfg
>I2 g

g(x, y),

where g is defined by (3.12). We apply the technique described in the proof
of Theorem 3.1, part (b) to the function fg. Suppose that D2, 2fg > 0 or
D2, 2fg < 0 on I2. Then (3.15) with fg or −fg will contradict to the
fact that >I2 fg=0. Therefore, there exists a point (r, s) ¥ I2 such that
D2, 2fg(r, s)=0. In view of >I2 g=(14)/(45), >I2 hfg=CFg(f), andD2, 2g=4
we complete the proof. L
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3.3. One-Sided Approximation from Below by B2, 2(I2)-Functions

Proof of Theorem 1.2. By Theorem 3.1 (b) we have hfg [ f on I2. Since
the cubature formula (3.14) is exact for all functions from B2, 2(I2), it
follows, by analogy with the proof of Theorem 1.1, that hfg is a best
one-sided approximant from below to f. Hence,

F
I2
(f−h) \ F

I2
(f−hfg) (3.16)

for each h ¥ B2, 2(I2) satisfying h [ f on I2.
Next, we prove the uniqueness of the best one-sided approximant hfg . Let

us assume that for some h0 ¥ B2, 2(I2), h0 [ f on I2 we have equality in
(3.16). Therefore,

F
I2
(h0−h

f
g)=0.

In view of the cubature (3.14), which is exact in B2, 2(I2), we obtain

0=F
I2
(hfg −h0)=F

1

−1
(hfg −h0)(x, 1− |x|) dx

+F
1

−1
(hfg −h0)(x, |x|−1) dx \ 0,

taking into account that h0 [ f on I2 and hfg |q*=f|q*. Thus,

h0|q*=hg |q*=f|q*

and consequently

min
I2
(f−h0)=(f−h0)|q*=0.

This implies that

grad h0|q*=grad f|q*=grad hg |q*

and by the uniqueness of the solution of the interpolation problem (3.1) we
get h0 — h

f
g . Hence, hfg ¥ B2, 2(I2) is the unique best one-sidedL1-approximant

to f from below. L

Proposition 3.4. There is no subset of I2, that is a canonical point set
for the problem of best one-sided L1(I2)-approximation from below by
B2, 2(I2)-functions to the cone of all C2, 2(I2)-functions with non-negative
(2, 2) mixed derivative.
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Proof. We have proved in Theorem 1.2 that qg is a canonical point set
for the class of all C2, 2(I2)-functions which are even with respect to one of
its variables with non-negative (2, 2) derivative. Thus, it is sufficient to
show, that there is a function k ¥ C2, 2(I2) with non-negative (2, 2) deriva-
tive, such that its transfinite Hermite B2, 2(I2)-blending interpolant on qg is
not a best one-sided L1-approximant to k from below.

Consider the function k ¥ C2, 2(I2) defined by

k(x, y) :=(x3−|x|3)(y3−|y|3), (x, y) ¥ I2.

We have

D2, 2k(x, y)=36(x− |x|)(y− |y|) \ 0, (x, y) ¥ I2.

We get from (3.2)–(3.5) for the components of hkg

he, eg =F
|x|

1/2
3t2(1−t)3 dt+F

|y|

1/2
3t2(1−t)3 dt+ 1

64 ,

he, og =−(1−|y|)
3 y3−y 5F |x|

1/2
3t2(1−t)2 dt−F

1− |y|

1/2
3t2(1−t)2 dt6 ,

ho, eg =−(1−|x|)
3x3−x 5F |y|

1/2
3t2(1−t)2 dt−F

1− |x|

1/2
3t2(1−t)2 dt6 ,

ho, og =xy 5F
|x|

1/2
2t(1−t)2 dt+F

|y|

1/2
2t(1−t)2 dt+ 1

16
6 .

It is not difficult to compute that

k(1, 1)−hkg(1, 1)=−
1
60

and from here hkg does not belong to the cone {h ¥ B2, 2(I2) : h [ k}. Hence,
hkg is not a best one-sided L1-approximant to k from below. L

Remark. Following [4, Proposition 1] and taking into account
Theorem 3.1 and Theorem 3.3 we can claim that hkg is a best one-sided
L1-approximant to k from below if k \ hkg on I2. However, as we have
seen, k(x, y) < hkg(x, y) in a neighborhood of the point (1,1) in I2.
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